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Abstract
Barabási and Albert proposed a preferential-attachment based graph construction in 1999, where

the temporal addition of nodes to the ’seed’ graph was probabilistically driven based on the de-
gree of the existing nodes. In this paper, we attempt to characterize the chromatic number of
Barabási-Albert graph by comparing extant theorems that model chromatic number as well as
provide a case for comparatively more accurate bounds based on cliques. In addition, we also
direct the reader and future investigator towards highly accurate lower bounds, particularly the
Lovasz number of the concerned graph’s complement. Adopting a considerably stronger exper-
imental component, our research makes use of a preferential-attachment simulator (code in the
appendix) to test and characterize various conditions and situations on the graph.

1 Introduction

In 1999, the preferential-attachment model was proposed by Barabási and Albert [6] to accurately
represent growing networks such as the internet. Barabási-Albert model (which will, going for-
ward, be referred to as the BA model for brevity), is similar to the Erdős–Rényi and Watts–Strogatz
models [4], [9], in the sense that all of them generate random graphs as well as describe network
evolution.

However, the starkest contrast is that the BA model has a temporal dimension as well, starting
out with a fixed set of nodes, with further nodes added stochastically added over a period of
time. Due to this temporal dimension, BA graphs have other distinct characteristics. First, they
are scale-free, that is, their degree distribution follows a power law. Further, these graphs are
characterized by network ’hubs’ - nodes in the network which successively accumulate a signifi-
cantly higher degree than other networks.

Beyond characterizing web-pages on the internet, the BA preferential attachment model has
been considered to describe the evolution of many other real-world networks. One major appli-
cation is in the neuroscience field of connectomics, where the BA model has been proposed as a
possible descriptor of brain development, describing the growth of neural networks from neuro-
genesis to the creation of complex structural and functional networks. Outside of neuroscience,
the BA model has also been proposed to characterize the growth of social networks. Once again,
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the BA model’s concept of hubs - ’rich get richer’ - plays a strong role in both these applications.

There are a number of derivatives of the BA model, all based on the concept of preferential at-
tachment - salient models include the Buckley-Osthus model [7] (which introduces a parameter
called the ’attraction constant’), the Móri model [8] (a specialization towards trees), and many oth-
ers. Irrespective, this paper will characterize the chromatic number in a generalized preferential
growth model.

2 Technical Preliminaries

2.1 Mechanism of Preferential Attachment

We define a graph Gn0
m having n0 vertices and mn0 edges for some value m, which defines the

number of new links to attach at a given time-step t. Then, the probability ∏(k) of a new node
attaching to the ith node of Gn0

m is given by

∏(k) =
ki

∑j k j
(1)

where ki is the degree the ith node, which is divided by the sum of all j pre-existing nodes.

Then, based on the Linearized Chord Diagram (LCD) [5], for m = 1 we can take initial graph
G0

1 . Then, for Gt−1
1 we add a single edge to generate Gt

1, such that

P =


ki

2t− 1
1 6 i 6 t− 1

1
2t− 1

i = t
(2)

where P is the probability of attachment.

2.2 Describing Network Degree

2.2.1 Network Degree Approximations

The node degree, k, can be approximated, represented with respect to t, a continuous, real vari-
able. Following from (1), the instantaneous rate of attachment for degree ki node can be taken as
the product of m and ∏(ki), that is

dki

dt
= m ∏(ki). (3)

Then, looping over all j nodes except ith node, we have

∑
j

k j = m(2t− 1) (4)

From equation (3) we have
dki

dt
=

1
2t− 1

. (5)
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For large values of t we can neglect the constant in the denominator such that

dki

dt
=

1
2t

. (6)

Since at time ti, a new node has m links with the existing graph, we can say that

ki(ti) = m. (7)

Finally, integrating, we get

ki = m
(

t
ti

)β

(8)

where β is taken as the dynamical exponent having the value 0.5.

2.2.2 Degree Distribution

Degree distribution in preferential attachment models follows an approximate power law. Based
on the Linearized Chord Model, the power law, pk, can be understood as,

pk =
2m(m + 1)

k(k + 1)(k + 2)
(9)

which reduces to
pk = k−3 (10)

when k >>> m, a result which is inevitable with progressive time-steps, considering the concept
of ’rich get richer’ high-degree hubs.

3 Simulation

The Barabási-Albert Graphs were simulated according to the pseudo-code schema presented be-
low.

Algorithm 1 Barabási-Albert Graph Construction

1: procedure PREFATTACH
2: ni ← nodes at given timestep
3: if m < 1 then return false
4: while ni < n do
5: ni ← m links
6: m links← terminal node.
7: goto loop.
8: close;
9: goto top.

3



Figure 1: BA graph at two stages of construction: m = 2 at t = 0 (left); fully constructed graph at t = 30 where
colored node is the most recently added node (right)

Figure 2: Degree distribution of above BA graph

Figure 3: Predicted degree distribution using eq.(10)
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4 Strange Behavior of Chromatic Number

Running the simulation, we observed a number of strange behavior of the chromatic number, χ,
with relation to varying values of n and m. Namely:

• χ did not depend at all on the value of n. When n was varied from 5 to 800, keeping m
constant, χ was also observed to remain constant.

• the value of χ incrementally increased (by approximately 4) when the value of m was incre-
mented by 10, keeping n constant.

• When m = n− 1, Gn
m transforms to star Sn

m; since a star is a special case of a tree, we see that
χ = 2.

5 Characterizing Upper Bounds for χ

5.1 Theorized but Improbable Bounds

5.1.1 Brooks’ Bound

A logical upper bound to chromatic number would be Brooks’ [1] theorem, which states that the
chromatic number, χ can be defined as:

χb 6 ∆(G) + 1, (11)

where ∆(G) is the maximum node degree of the graph.

Alternatively, Brooks’ theorem can be textually defined as χ(G) 6 ∆(G) unless G contains a
clique of size ∆(G) + 1 or ∆(G) = 2 and G contains an odd cycle. However, for the purpose of
this paper, we will be adhering to the definition of eq.(11). However, due to the presence of high-
degree hubs in the graph, ∆(G) is usually several times greater than the average node degree. For
small values of n and m, ∆(G) was usually 25 to 30 times higher than the average node degree,
while for m→ n we observed that ∆(G)→ m.

To judge the accuracy of defining χ with Brooks’ theorem, we used greedy coloring in our
simulation to approximate the actual chromatic number of the graph, and compared it to the
predicted values, χb. To make an accurate comparison, we kept fixed value of n (as mentioned
earlier, χ did not depend on n but rather only on m) and incrementally varied m from 1 (the
minimum value of m for BA models) to n− 1 (the maximum value of m).

5.1.2 Kovalenko’s Bound

As a comparison to Brooks’ Theorem, we considered Kovalenko’s [10] upper bound for χ. Ac-
cording to Kovalenko,

χk 6
log n− log m
log (1 + 1

m )
+ m + 1 (12)

We used the same comparative method for χk as we did for χ
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We observed that in every case of m, both χb and χk had the least deviation from χ when m = 1,

while maximum deviation for χk observed when m ≈
n
3

.

Figure 4: Actual vs Predicted: Distribution for Brooks’ Upper Bound

Figure 5: Actual vs Predicted: Distribution for Kovalenko’s Bound

5.1.3 The Inapplicability of Brooks’ and Kovalenko’s Bounds

As observable from the above graphs, χb is not viable as a bound due to the high inaccuracy -
since it is wholly dependent on ∆(G) it steadily deviates away from χ as m increases. While χk
is significantly more accurate than χb, it was observed that χk − χ reached negative values - this
fundamentally contradicts the concept of an ’upper bound’. Analyzing the formulation of χk, it
is clear that its foundational fallacy is due to its dependence on n, which, as observed from the
simulation, did not have any effect on χk.
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5.2 Improved Bound Based on Cliques

Considering the aforementioned inapplicability of χk and χb to form an upper bound for χ, we
now turn our attention to incorporating the clique number ω(G) within the upper bound. In 1998,
Reed [3] generalized an upper bound for chromatic number based on degree and clique number;
considering that the process of preferential growth was biased towards generating complete in-
duced subgraphs Kn (refer fig. 2).

Thus, we decided to repurpose Reed’s upper bound for the chromatic number, χr to the prefer-
ential attachment model.

According to Reed, the chromatic number can be bounded such that:

χr 6
∆(G) + 1 + ω(G)

2
(13)

which can alternatively be reduced to

χr 6
χb + ω(G)

2
. (14)

Based on the above relationships, we can see that

χk 6 χr 6 χb (15)

observing that χk = χr = χb only when ∆(G) = 1. From the below graph, we can see that while
not as accurate as χk, χr does not suffer from the fundamental fault of dipping below the actual

chromatic number that the former does when m >
2n
3

Figure 6: Three-way Comparison Between Brooks’ Bound, Reed’s Bound and
Actual Chromatic Number
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Figure 7: Three-way Comparison Between Kovalenko’s Bound, Reed’s Bound
and Actual Chromatic Number

6 Characterizing Lower Bounds for χ

6.1 Kovalenko’s Lower Bound

While there is a moderate amount of information available relating to characterizing the upper
bound of chromatic numbers of preferential attachment models, significantly less information is
available for characterizing the lower bound.

Kovalenko’s lower bound is defined as:

χ >
m

(4 + ε) log m
(16)

for large enough m = m(ε). However, it is uncertain how to determine the value of ε, and
we assume that it is present to account for the rapid decrease in chromatic number seen when
m→ n (see section 4, bullet 2). Thus we can compare the values of actual and predicted chromatic
number, as we had done with the upper bound as well.

Figure 8: Lower bound Comparison
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Once again, here, we can account for the dipping of chromatic number below Kovalenko’s lower
bound by considering the constant ε accordingly.

6.2 Lovasz Number

Finally we define the Lovasz number [2] as the most accurate predictor of chromatic number. The
Lovasz number can be bounded by the relation

α(G) 6 Θ(G) 6 ϑ(G) 6 χ, (17)

where α(G), Θ(G), and ϑ(G) denote the Independence number, the Shannon capacity and the
Lovasz number, respectively. While initially just a quantitative upper bound of the Shannon ca-
pacity (whose calculation is considered an NP-complete problem), we observed that in the context
of the preferential attachment model, ϑ(G) could always be rounded to the nearest ones place, to
yield the exact value of the chromatic number.

It must be noted that the Lovasz number is explicitly calculated for the complement of the graph,
not for the graph itself. It is defined by the equation:

ϑ(G) = max
d,V

∑
i∈V

(dTvi)
2, (18)

where d is a unit vector and vi is each entry in the orthonormal representation of G. While cor-
rected versions of the Lovasz number like the Szegedy and Schriver number do exist, discussion
regarding their ability to predict chromatic number is outside the scope of this paper. As with the
simulation, the code regarding the computation of the Lovasz number is present in the appendix.
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7 Appendix

7.1 Simulation Code

import networkx as nx

def Barabasi_albert_graph(n, m, seed):

if m < 1 or m >=n:

raise nx.NetworkXError("BarabasiAlbert network must have m >= 1")

if seed is not None:

random.seed(seed) #randomize the graph construction process

G=empty_graph(m) #begin with an empty graph

G.name="Barabasi_albert_graph"

tgt=list(range(m))

r_nodes=[]

src=m

while src<n:

G.add_edges_from(zip(*m,tgt))

r_nodes.extend(tgt)

r_nodes.extend(*m)

tgt = _random_subset(r_nodes,m)

src += 1

return G

7.2 Lovasz Number

from __future__ import print_function

import numpy as np

import cvxopt.base

import cvxopt.solvers

def lovasz_theta(G, long_return=False, complement=False):

(nv, edges, _) = parse_graph(G, complement)

ne = len(edges)

# This case needs to be handled specially.

if nv == 1:

return 1.0

c = cvxopt.matrix([0.0]*ne + [1.0])

G1 = cvxopt.spmatrix(0, [], [], (nv*nv, ne+1))

for (k, (i, j)) in enumerate(edges):
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G1[i*nv+j, k] = 1

G1[j*nv+i, k] = 1

for i in range(nv):

G1[i*nv+i, ne] = 1

G1 = -G1

h1 = -cvxopt.matrix(1.0, (nv, nv))

sol = cvxopt.solvers.sdp(c, Gs=[G1], hs=[h1])

if long_return:

theta = sol[’x’][ne]

Z = np.array(sol[’ss’][0])

B = np.array(sol[’zs’][0])

return { ’theta’: theta, ’Z’: Z, ’B’: B }

else:

return sol[’x’][ne]
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